Convergence of averages of scaled functions of I(1) linear processes
نویسنده
چکیده
Econometricians typically make use of functional central limit theorems to prove results for I(1) processes. For example, to establish the limit distributions of unit root tests such as the Phillips–Perron and Dickey–Fuller tests, the functional central limit theorem plays a crucial role. In this paper, it is pointed out that for linear processes, minimal conditions that ensure that only a central limit theorem holds are sufficient for establishing limit distributions of such tests. This eliminates the need to impose the stronger functional central limit theorem conditions and implies convergence of Dickey–Fuller type unit root tests under minimal conditions. 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Strong $I^K$-Convergence in Probabilistic Metric Spaces
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
متن کاملConvergence of Multiple Ergodic Averages for Some Commuting Transformations
We prove the L convergence for the linear multiple ergodic averages of commuting transformations T1, . . . , Tl, assuming that each map Ti and each pair TiT −1 j is ergodic for i 6= j. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the s...
متن کاملA novel modification of decouple scaled boundary finite element method in fracture mechanics problems
In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...
متن کاملA new model of (I+S)-type preconditioner for system of linear equations
In this paper, we design a new model of preconditioner for systems of linear equations. The convergence properties of the proposed methods have been analyzed and compared with the classical methods. Numerical experiments of convection-diffusion equations show a good im- provement on the convergence, and show that the convergence rates of proposed methods are superior to the other modified itera...
متن کاملOn Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations
In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations. One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach. Each of methods showed fast convergence in special problems and slow convergence in other o...
متن کامل